

责任编辑/王 蕊

据"今日俄罗斯"网站报 道,近日,俄太平洋舰队潜艇部 队司令部参谋长、海军少将阿 尔卡季·纳瓦尔斯基表示,俄太 平洋舰队将在未来几年获得2 艘可搭载"圆锤"洲际弹道导弹 的 955A 型战略核潜艇和 2 艘 负责守卫的 885M 型攻击核潜 艇。这4艘新型核潜艇将部署 在堪察加半岛维柳钦斯克潜艇 基地,用于强化远东地区俄海 军作战力量,加强对美核威慑。

"北风之神"出动

955A型战略核潜艇是北风之神级 战略核潜艇家族的最新型号,也是俄罗 斯海上战略核力量的基石。

叶利钦主政时期,俄罗斯重新确认 核武器在国家安全战略中的重要地位, 负责核反击作战的战略核潜艇重新受到 重视。1996年,俄罗斯开工建造北风之 神级战略核潜艇,代号955型。俄罗斯 计划建造8艘该级核潜艇,并在前3艘建 成后,对该级艇进行改进,型号也改为 955A。2019年底,955A型战略核潜艇首 艇服役

与前3艘955型战略核潜艇相比, 955A型战略核潜艇采用更多新技术和 新设备,被称为"真正的'北风之神'"。 该级艇大量使用数字电子技术设备替 代早期的模拟电子技术设备,提高工作 效率;使用改进型泵喷推进技术,提高 整体静音性能;采用新型消声瓦材料且 改进铺设方式,进一步降低艇体噪音水 平;加装侧舷被动声呐阵列,增强潜艇 信息感知能力。

955A型战略核潜艇的最大变化是 取消背部整流罩(俗称"龟背"),同时将 原先由整流罩覆盖的洲际弹道导弹完全 置于艇体中。据俄罗斯"红星电视台"报 道,955A型战略核潜艇水下排水量2.4 万吨,超过955型战略核潜艇的1.7万 吨,艇内搭载16枚"圆锤"洲际弹道导 弹。这是一种可携带6枚至10枚分导式 核弹头的固体燃料三级弹道导弹,射程 超过8000千米。由于采用分导式多弹 头设计,且弹头具备末段机动能力,该导 弹的综合突防性能极强,对防御造成极 大困难。

俄罗斯对北风之神级战略核潜艇高 度重视,俄总统普京曾表态:"即便把克 里姆林宫卖了,也要及时造出新一代潜 艇。"除首艇外,目前在建的955A型战略 核潜艇至少有4艘,未来将分别部署到 北方舰队和太平洋舰队的核潜艇部队。

据报道,未来与2艘955A型战略核 潜艇一同派往太平洋舰队的,还有2艘 885M型攻击核潜艇。

885M型是俄罗斯第4代亚森级攻 击核潜艇家族主力,也是俄罗斯针对 美国弗吉尼亚级攻击核潜艇设计的一 款静音型潜艇。该型艇在下潜深度、 静音性能和对岸攻击方面全面超过俄 罗斯其他攻击核潜艇。据俄《造船》杂 志披露,885M型攻击核潜艇长121米, 排水量1.4万吨,采用钛合金双(耐压) 壳体设计,可穿透数米厚的极地冰 层。该型艇最大潜深超过一般攻击核 潜艇,使得敌方探测设备很难进行跟 踪定位。

885M 型攻击核潜艇主要承担反 潜、反舰和对陆打击任务。主要反潜武 器是艇体舯部两侧的8具多用途鱼雷 发射管,可发射 UGST-80、UGST-90 等型号鱼雷和反潜导弹。UGST-80型 鱼雷长 7.2米,发射重量 2.2吨,弹头装 药量300千克, 航速30节至50节, 射程 25千米至40千米,作战深度500米。 UGST-90型鱼雷最大作战深度达650 米。另外,指挥台围壳后设有8具导 弹垂直发射装置,每个发射装置内最 多装载3枚导弹,最大装弹量24枚,主 要用于发射反舰导弹、对陆攻击巡航 导弹和高超音速导弹。

目前,885M型攻击核潜艇首艇"喀 山"号已经服役,并完成对"锆石"高超 音速导弹和"口径""缟玛瑙"等新型巡 航导弹的试射测试。二号艇"新西伯利 亚"号将于今年底交付俄海军。此外,

还有6艘正在建造。

打造"远东壁垒"

4艘核潜艇的到来,将大大增强俄 太平洋舰队的水下作战力量。

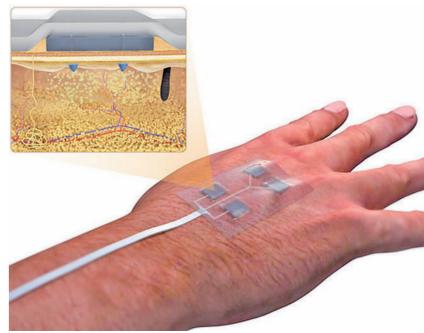
分析认为,这4艘核潜艇将部署在 堪察加半岛维柳钦斯克潜艇基地。这 里是苏联在冷战时期建造的亚洲最大 潜艇基地,最多时曾有数十艘潜艇部署 在此。维柳钦斯克潜艇基地依山而 建,当年苏军将岛上的花岗岩山体凿 空,并用钢筋混凝土进行加固,内部修 建洞库式停靠码头。潜艇维修、装弹、 出航等一系列工作均在洞库内完成,并 从水下出海,隐蔽性极强。俄媒曾报道 过这里代号825CTS的基地,相关指挥、 居住、训练和附属设施深入地下50米至 100米,内部可同时部署7艘核潜艇,储 存大量食品,并拥有完善的通风和净化 系统,足以供相关人员生活3年

围绕维柳钦斯克潜艇基地,俄海军 还打造了多个"堡垒海域",用于保障战 略核潜艇发射任务。为确保这些海域的 安全,俄军派出大型反潜舰严密守护,同 时派遣己方攻击核潜艇进行水下护航, 应对敌方攻击核潜艇的渗透骚扰。

随着955A型战略核潜艇和885M 型攻击核潜艇的加入,俄太平洋舰队将 更有底气承担起对美战略核威慑重任, 其攻击核潜艇甚至可前出太平洋,与美 国核潜艇一较高下。

技术前沿

战场上,及时有效的伤员后送与 急救,是挽救生命、降低伤亡人数的必 要手段。卫勤人员对伤员进行救治 时,通常采用绷带进行压迫止血,同时 起到防止感染的作用。然而,普通绷 带存在一定不足。例如无法实时查看 伤口愈合情况,这对恢复周期较长的 伤口尤为不便。为了解伤口愈合情 况,医护人员只能频繁拆解绷带进行 检查,可能损坏脆弱的愈合组织。


近日,意大利博洛尼亚大学研究 人员表示,他们开发出一种"智能绷 带",可以让医护人员在不移除绷带。 中断愈合过程的情况下,检查伤口情 况。相关研究成果发表在最近一期的 《物理学前沿》杂志上。据介绍,这种 "智能绷带"配有传感器,可实时采集 伤口处的水分含量信息。传感器由-种导电聚合物制成,使用丝网印刷技 术附着在纱布上,再制成绷带

伤口愈合受温度、湿度等诸多因 素影响。过于干燥的伤口表面不利于 组织生长,湿度太大则导致伤口发白 并出现褶皱。尤其对慢性伤口而言, 保持最佳水分状态被认为是伤口愈合 的关键

除传感器外,研究人员还在纺织 品中加入一种廉价、一次性且与绷带 兼容的射频识别标签。它可将传感器 采集到的水分含量信息,以射频形式 传输到附近的智能手机上,使"医护人 员知道何时需要更换绷带"

为测试这种"智能绷带"的实际效 果,研究人员将其暴露在人工伤口渗 出液中。测试结果显示,"智能绷带"

在干燥、潮湿和湿度饱和3种条件下显 示出截然不同的读数,表现出较高的 灵敏度。目前,这一技术尚未达到临 床试验标准。研究人员同时致力于开 发不同吸收特性的绷带,以应对不同 类型伤口。

通过检测伤口水分含量数据,掌握愈合情况,免去拆解绷带的过程

测试中的 Cadet-75 伞降系统

"新手"专用伞

■杨远超 刘凡凡

蔚蓝的天空下,一朵白色伞花徐徐 降落,伞下是一名俄罗斯空降兵。

这是俄罗斯 Cadet-75 伞降系统,一 款为"新手"设计的降落伞。该系统主要 用于空降兵训练跳离飞机、自由降落、手 动开伞等"初级"技能,适用于飞行速度80 千米/小时、高度4000米、总重量不超过 120千克情况下的跳伞训练。这一飞行 条件相当于跳伞训练的"入门级"水平。

与其他伞降系统相比,Cadet-75伞 降系统的稳定性更好,使跳伞人员能在12 秒内完成空中转向。另外,在距离地面30

米至35米的空域,Cadet-75伞降系统的 垂直下降速度不超过5米/秒。在180千 米/小时的飞行速度下,最低安全伞降高 度为150米。考虑到目前大多数伞降系 统的最低安全伞降高度在200米以上, Cadet-75 伞降系统对"新手"来说,可谓 "安全感"十足。

Cadet-75 伞降系统对待"新手"的 "温柔"做派,绝不代表俄空降兵伞降训 练的真实情况。事实上,俄空降兵伞降 训练一向以"严酷"著称。他们曾用"突 击"和"长跑运动员"两款伞降系统,刷新

世界各国对空降兵的认知。前者将特种 部队最低安全伞降高度降到70米,后者 经历了北极地区万米集体空降大考验。

严酷训练下锻造出的俄空降兵,拥 有强悍的战斗力,并成为俄军作战行动 中频繁使用的"利刃"。而打造这样一支 "利刃"部队,最初正是始于这一朵朵美 丽的伞花。

图文兵戈

美军完成无人机空中回收测试

据美国"防务新闻"网站报道,美国防部高级研究计划局日前宣布,对"小精灵"无人机的空中回收和再 次发射测试首次获得成功。该局称,试验对美军形成智能化"蜂群作战"能力具有重要意义。

测试取得阶段性成果

据报道,此次测试于10月29日在 美国犹他州达格威实验场进行。当天, 一架无人机在执行完任务后,被顺利回 收至空中的 C-130 运输机内,并在24 小时的补充和维护后再次派出。

报道称,测试的关键环节是验证无 人机回收技术。这一技术因难度较大, 被认为是"小精灵"项目的最大障碍。 测试视频显示,"小精灵"无人机在与 C-130运输机下放出的机械臂顺利对 接,随后收起机翼,被机械臂带回机舱 内。美方测试人员表示,测试过程中的 系统性能、对接流程和空气动力参数将

作为重要数据被保留,用于下一步技术 力,降低财力、人力风险和成本。

完成回收试验后,下一道技术难题 是提升回收速度。美方技术人员称,已 经掌握快速回收多架无人机的方法,正 对相关硬/软件进行完善。另外,美国 防部高级研究计划局还要求达到更多 目标,包括在未被摧毁的情况下,"小精 灵"无人机可循环使用20次以上,将运 载工具从运输机拓展到轰炸机等机型。

"小精灵"项目持续推进

近年来,美军着重发展低成本、 小型化、可回收的无人装备,并通过 嵌入智能协同技术、增加分布作战能

2015年,"小精灵"项目获批,工程按 照概念设计、系统规划、原型机验证3 阶段推进。目前,该项目已进行到最

为满足实战要求,美军"小精灵" 项目主要在3方面"发力"。一是提高 回收速度,实现在半小时内回收、发射 4架以上无人机的目标。二是通过大 量模拟仿真或演习论证,解决复杂环 境下"小精灵"无人机与有人战机的协 同问题。三是进一步放宽无人机的行 动权限,提高行动自主性。可以预见, 一旦上述研究取得突破性进展,具有 高度协同能力的"小精灵"无人机群将 带来新威胁。

