兵器大观 好私軍级 责任编辑/王社兴 2022年9月16日 星期五



今年以来的一些军事冲突中,直升机飞行员 成功从被导弹击中的战机里逃生的事实,再次引 起人们对直升机弹射座椅的关注。

而在固定翼战机弹射座椅方面,"动静"较大 的当属美军。在今年4月的一次例行检修中,其 发现一架 F-35A 战斗机的弹射座椅爆炸药筒装 药量严重不足后,一度停飞了所属的F-35系列战

斗机,对战机安全情况尤其是弹射座椅故障风险

一把小小的"椅子",何以能受到如此重视? 又为何能掀起如此大的风波? 作为"飞行员最后 的安全依靠",当前各国装备的弹射座椅是否能达 到"一旦拥有、心中无忧"的水平呢?请看今日解

## 弹射座椅

# 时刻准备挥动的"回生之手"

■张乃千 张 谦







对战机的弹射座椅,人们给予了很 多美誉,比如"飞行员最后的安全依靠" "飞行员的护身符""空中卫士的空中卫 士"等。其中,有人因弹射座椅状如半 握的手掌而将其称作"回生之手",意思 是一旦使用可以使飞行员绝境逢生。

作为当前战斗机的标配,弹射座椅 可在紧急情况下,利用火箭动力等将飞 行员弹射出战机,力保飞行员安全着 陆。但事实上,就问世时间先后来说, 弹射座椅相对于战机的诞生是不折不 扣的"后来者"。

### 生死考验催生空中 逃生"神器"

最初的驾机飞行被称作"勇敢者的 事业"。最主要的原因,就在于其风险 性较大,一旦失事后果往往比较严重。

为保证飞行员的生命安全,人们想 到了为他们配备降落伞。刚开始时,战 机飞行速度较慢,降落伞还能发挥作用。

到了第二次世界大战期间,战斗机 时速已达600千米以上,飞行员使用降 落伞从空中安全逃生的难度变大,每一 次空中逃生都成为一场生死考验。于 是,各国开始寻求更有效的空中逃生装 备。后来,能将飞行员快速带离机身并 力保其安全着陆的弹射座椅应运而生。

压缩空气较早被德国用作空中救 生座椅的弹射动力。1942年,在亨克 尔-280战斗机试飞过程中,德军飞行 员首次使用以压缩空气为动力的弹射 座椅,并取得成功。但是,储存压缩空 气的装置要占用战机大量空间,一定程 度上会影响到战机的整体作战性能。 于是,弹射座椅转向以火药为动力。到 了第二次世界大战末期,以火药为动力 的弹射座椅已经广泛应用于德军的亨 克尔-162、亨克尔-176等机型。

在德国研发的弹射座椅基础上,英 国马丁•贝克公司提出了弹道式弹射理 念,并成功生产出首款量产型弹道式弹 射座椅 Pre-Mk1。苏联也于这一时期 在米格-15、米格-17战斗机上装备了 采用类似原理的弹射座椅。

20世纪50年代中期,用小型火箭 作为动力的弹射座椅问世,并发展为人 们所熟知的"零-零"弹射座椅。"零-零"弹射座椅,意即它能在战机零高度、 零速度的条件下实现弹射,并保证飞行 员生命安全。

20世纪60年代中期,随着高空高 速战斗机的发展,如何在高空高速状态 下实现安全弹射,成为弹射座椅研发者 需要破解的新问题,也由此催生了苏联 研制的 K36 通用弹射座椅等产品。

目前,世界各国空军战斗机装备的 座椅。这类弹射座椅聚焦战机多种飞 行姿态下的飞行员逃生需求,采用了座 椅稳定、方向感知装置和电子程序控制 器等,能根据弹射后人椅的实时高度和 速度决定开伞时机。

1989年的巴黎航展上,一架米格-29战斗机因发动机故障失速坠毁,该机 飞行员在战斗机撞地前2.5秒启动了弹 射座椅安全逃生。这一事件,使得该战 机所配装的改进型 K36 通用弹射座椅

## 用在一时却需长期 倾心付出

弹射座椅能在危难时刻给予飞行 员"绝处逢生"的机会,但飞行员要真正 抓住这个机会,需要具备不少条件。

"台上一分钟,台下十年功",这句 生发于戏曲表演的俗语,用来形容弹射 座椅的研制与使用同样也很贴切。弹 射座椅的使用只在刹那间,可对其平时 的维护与检测却是长期而严苛的,"时 刻准备好"是最起码的要求。更不用 说,其研制完善过程之艰难、用时之漫 长,令世界上能够掌握这项技术的国家

弹射座椅虽然只是一把"椅子",却 涉及空气动力学、流体力学等数十个学 科方面的高精尖技术。作为涉及弹射 操纵、稳定减速、远距离点火、人椅分 离、应急供氧等多个系统的高端装备, 哪一个环节出现问题,都可能引发严重 后果。这也决定了其对各系统的可靠 性和整体系统的运行顺畅性要求都极 高。空中高速机动的特点则让其安全 性因"压力山大"而时刻处于动态变化

这,也正是弹射座椅出现非正常运 行状态的主要原因。

2018年,美国空军一架B-1B轰炸 机在飞行时发动机突然起火,机组人员 选择弹射时,弹射座椅并未启动。

2019年,法国空军一架双座型阵 风战斗机在进行飞行训练时,后座人

员意外拉动弹射座椅启动手柄被弹射 出战机。但由于弹射座椅出现程序故 障,前座飞行员在座舱盖炸裂后并没

不少类似事件的溯源结果都表明, 弹射座椅要堪用,既取决于厂家生产出

除了确保弹射座椅能在各种极端 条件下正常工作外,飞行员的身体状况 也与弹射成功率息息相关。弹射瞬间, 飞行员通常要承受约15倍的重力加速 度,巨大的冲击力会令飞行员头晕目 眩,一些体质较差的飞行员甚至会陷于 无意识状态。这种冲击力有可能对飞 比较适合的应急出舱方式。 行员的头颈部和脊柱造成损伤。

克的飞行员,使用US-16E型弹射座椅 座椅一起弹离机体。这种设计主要使 弹射时,颈部更容易受伤。2019年,英 用在一些轰炸机上,在逃生舱脱离机身 国空军则发现,一些飞行员无法使用 后,机组人员仍坐在驾驶舱的座椅上, F-35A战斗机所装配的弹射座椅,直接 随着驾驶舱一起逐步降落到地面。 原因是这些飞行员体重超标。

上述国家为此纷纷采取改进措 施。这也同时表明,要提升弹射座椅弹 此就有了"胶囊弹射座椅"的设计问 射的成功率,对飞行员身材进行"管理" 同样重要。

当然,有针对性的专业训练必不可 少。在作战环境中,战机一旦空中遇 险,其飞行姿态各式各样。如何及时抓 住各种飞行姿态之下的"逃生窗口",在 最适当的时机拉动弹射手柄,有赖于长 期训练。否则,即使弹射成功,也有可 能因时机把握不当出现失控翻滚等现 象,为飞行员带来不必要的损伤。

由此可见,弹射座椅这只"回生之 手"挥动虽只在一瞬间,但它需要的是 各方力量长期的倾心付出。

## 多方拓展只为"长出 生命之翼"

超高的技术工艺要求、大量的资金 人才投入,使研制弹射座椅成为少数几 个国家的"特权"。目前,全球仅有美、 俄、中、英、法5国具备研发和生产弹射 座椅的能力。

特殊的使用环境、严苛的使用条 件,则使弹射座椅基本上成为军用飞机 的"私人订制"。但是,这并不等于弹射 座椅的研制与使用自始至终是"一个面

除了战斗机通常装备的上抛式弹

射座椅外,一些较为另类的弹射座椅也 先后走上历史舞台。

美军曾经装备的 F-104战斗机所 用弹射座椅,采用的就是向下弹射的方 式,即让弹射座椅从机头下面的洞里弹 射而出。这种弹射方式,虽说可以避开 显弊端。如果弹射时高度不够,降落伞 就来不及在空中打开,低空弹射时飞行

美军的B-52轰炸机也装有向下弹 射的空中逃生座椅。这种座椅仅限于 导航员和雷达操作员使用,因为他们的 工作点位处于驾驶舱下方,向下弹射是

除了将座椅弹射出去,也有国家探 美国空军一度发现,体重小于62千 索过新的"招式"——将战机座舱连同

> 在高空高速等环境下,普通弹射座 椅已经无力为飞行员提供足够保护,因 世。这种胶囊弹射座椅形似鸡蛋,平时 保护壳折叠在飞行员座椅上方,一旦紧 急启动就会立刻从上方落下,与座椅底 座形成密闭的保护空间。

> 随着科技发展,弹射座椅的应用早 已不限于固定翼飞行器,一些直升机也 开始配备弹射座椅。如俄罗斯的卡-50/卡-52直升机,它们可装备K37弹射 座椅。遇到紧急情况需要弹射时,卡-50/卡-52直升机会首先通过爆炸螺栓 炸断螺旋桨,进而引爆座舱盖以便将飞 行员安全弹射而出。

> 综观以往,弹射座椅的基本构形已 经确定,且正发挥着应有作用。放眼未 来,其发展方向将是充分借助新科技, 进一步健全完善功能,使其"长出"更有 力的"生命之翼"。大体上来说,就是充 分融合物联网、传感器、人工智能技术 的新研究成果,打造出新一代智能型弹 射座椅。目前,各军事强国正在聚力攻 关第四代弹射座椅。其核心目标就是 更好地解决各种飞行姿态下的安全弹 射问题,同时通过自主感知飞行姿态、 自主规划逃生路线等,来智能规避空中 障碍物,最终实现飞行员更高水平和更 高层次上的安全逃生。

> > 供图:阳 明 张乃千 本版投稿邮箱:jfjbbqdg@163.com

# 向"嫁接"要兵器性能提升

■曾建伟 王文岳

对兵器来说,追求更高性能几乎贯

"嫁接",是属于后者中比较典型的一种

在增加炮弹射程方面,如果说枣核 弹、底凹弹、底排弹的问世,体现着炮弹

设计、火箭增程等手段,则体现着其在

火箭发动机的加入使火箭增程弹兴 起,也使一些大口径火炮因射程激增具有 于是,人们将目光投向了可在空中"就地 取材"获得氧气的冲压式喷气发动机。今

备都有"嫁接"的必要与可能。毕竟,作 战虽需要高精尖武器,但同样需要大量 下,对大量常规武器,用最新技术与装备 研发成果去"拉一把",几乎是一种必 然。这也意味着,"嫁接"之举今后仍将

如果避开内装药不谈,制造子弹用什么材料更好?相关争论由来已久。尤 其在选择铜还是钢的问题上,各方更是"公说公有理、婆说婆有理"。如果这两 种金属也有思想且能言善辩,其辩论应该是一种什么样的场景?我们不妨来假 想一次"铜"与"钢"的对话—

#### 制造子弹:

# 用铜用钢哪个好?

## 兵器知识

"老资格"了,你们钢用于制造子弹才有 几年?而且,用黄铜制造子弹,已经成为 军工行业的共识。我称第一,没问题吧?

钢:要说"老资格",那该是铅。19 世纪之前,子弹大都是铅做的。只是后 能量,才轮到了铜。至今,一些弹头依然 含有不少铅。再说,钢用作子弹的历史 也不短。一战末期,德国就开始用钢生 产弹壳。这一做法,后来也被苏联等国 家采用。

铜:那你知道后来这些钢弹壳都裹

钢:甭管裹多厚的黄铜,它也是钢弹

铜:用铜造子弹有很多优势,这你不 会否认吧?尤其在造弹壳方面,好处有 目共睹。铜延展性、导热性都好,形变性 强,表面光滑,这些属性不仅让利用我们 过程中,铜质弹壳因表面光滑、韧性好, 一般不会出现卡壳或断裂现象。发射的 一刹那,弹壳还可以因受热和枪膛靠得 更近,起到密封高温高压气体作用。弹 头出膛后,因内部压力下降,弹壳又可以 快速恢复到原来形状,有利于抽壳,有效 降低射击时的故障率。

的弱项并非无法克服。随着制造工艺的 改进,钢壳子弹加工变得更加容易。为 实现顺利抽壳,我们增大了自身锥度,学 习你们优长,摇身变为覆铜钢弹壳,增加 润滑度的同时,也减轻了对枪膛的磨 损。为解决形变性差及受进入枪膛内的 沙、尘、污垢影响较大导致的漏气问题, 能努力加以改进。更何况,我们也有你 们难以企及之处。比如,在连续射击、温 度较高的情况下,钢质弹壳就比铜质弹 壳抽壳性能好。

铜:那咱说说弹头,这可是我们的主

弹头可都是铅做的。铜用于弹头最多是 是共同铸就更好子弹的王道。

铜:是呀,后来的弹头被甲,无论是

钢:这个不否认。但也别忘了钢被 甲的存在,有的钢被甲只是覆了一层 铜。有的钢被甲镀的是镍,干脆和你们 铜没关系。还有如今弹头的弹芯,除了 铅可就是我们钢的天下了呀。在弹头 上,只能说打平。

铜:怎么能说打平?质地较软的黄 途。捷克国防大学研究人员研制的反 目标时会瞬间膨胀,使劫机者讯谏失 能,避免"穿体而过"对客机造成灾难性

钢:保持弹头稳定性与射击精度,是 我们钢被甲弹头的立身之本。要论特 长,钢也不差。钢芯弹头的穿透力,道一 句"独步天下"不过分呀。

铜:我们在正常天气条件下不易生

钢:这对我们也不是难事。很多钢 目的就是为了防锈。

铜:我们在一定情况下能通过复装 节省成本,你们能吗?

钢:要论节约成本,那可是我们的强 项。铜很贵而钢铁便宜,这就是我们存 在的最大价值。俄罗斯图拉兵工厂生产 的 5.56 毫米口径钢壳弹, 当时售价为 23 钢:存在的都是合理的。这句话适 美元/100发。同时期美国 federal 黄铜 用于你们,也适用于我们钢质弹壳。钢 壳子弹的价格则为30-35美元/100发。 虽然没有铜延展性好、形变性强,但我们 再说,弹壳复装安全性要求很高,大批量 复装显然不现实。这也是当前,在黄铜 价格重回平均值之后,也没能撼动钢制 子弹地位的原因。

铜:照你这样说,当今世界大多数国 家都在造黄铜弹壳子弹,就没有理由了?

钢:那倒不是。和不少国家制造钢 壳子弹一样,其原因是各有所长。更何 我们正通过提高自身加工精度和枪械性 况,你我联手才能实现优势互补。这也 正是不少弹壳和弹头被甲看似是用铜制 作,实际却是铜、锌、铅、钢等材料"合体"

> 铜:"尺有所短,寸有所长",这句话 看来用在制造子弹上也很适合。

钢:同意。只有互相包容,找到成 钢:话不能这么说。很长一段时间, 本、性能、功效的最佳平衡与结合点,才

